Tag: gerak parabola

Animasi Gerak Parabola

Mungkin mudah mencontohkan gerak para bola kepada siswa. Guru cukup menunjukkan bagaimana bola ditendang melambung, pasti membentuk gerak para bola. Namun, apakah guru akan bisa menunjukkan bagaimana gerak parabola disimulasikan secara persekian detik dapat menggambarkan gerakkan parabola sebuh bola. Salah, satu yang girunakan untuk mensimulasikan gerak parabola adalah dengan Matlab. Keunggulan dari Matlab selain dapat menunjukkan gerakan per detik, juga dapat diinteraksikan sesai dengan persamaan parabola. Untuk membuat simulasi dengan Matlab, kita dapat menggunakan program dari Guide Matlab. Program ini dapat didesain dengan kehendak kita baik dengan input, dengan slider, dengan button, dan seterusnya. Kali ini kita akan mendesain...

Read More

Cara membuat Gerak Parabola (Projectile Motion) Matlab

Siapa yang tidak tahu, kalau¬†bola ditendang melambung pada olah raga sepak bola akan membentuk gerak parabola (gerak seperti bentuk gunung). Gerak tersebut belum tentu akan membentuk parabola simetri karena kemungkinan angin akan mempengaruhi kesimetrian gerak tersebut. Meskipun demikian, pada tutorial ini hanya memfokuskan pada gerak parabola dengan mengabaikan gesekan angin. Untuk memvisualisasikan gerak ini, Anda dapat menggunakan Matlab sebagai bantuan kepada siswa Anda. Matlab merupakan program yang mampu membuat animasi, perhitungan, plot grafik dan banyak lagi. Oleh karena itu, kami ingin mendemostrasikan bagaimana Matlab dapat digunakan sebagai alternatif media gerak para bola. Langsung saja, langkah membuat gerak peluru pada Matlab sebagai berikut: Buka Matlab Jangan lupa arahkan pada folder yang inign menyimpan scirp Buka scirp matlab Kemudian copy paste scrip berikut % input artinya membuat v0¬† (kecepatan awal) dan a (sudut elevasi) %sebagai variable yang dapat diubah-uban nantinya v0=input(‘kecepatan awal:’); a= input(‘sudut elevasi:’); %pendefinisian variable h= 0.05; a=a*pi/180; g=9.8; %Percepatan dalam gravitas m/s^2 xmax=v0^2*sin(2*a)/g; ymax=v0^2*sin(a)^2/(2*g); td=2*v0*sin(a)/g; %Waktu total x1=0; y1=0; for t=0:h:td+h x=v0*t*cos(a); %jarak dalam sumbu x y=v0*t*sin(a)-g*t^2/2; %Jarak dalam sumbu y plot(x,y,’ro’) hold all xlim([0 1.1*xmax]); ylim([0 1.1*ymax]); title(‘Gerak Parabola’); xlabel(‘Jarak (meter)’); ylabel(‘Ketinggian (meter)’); getframe; x1=x1+h*v0*cos(a); %Metode Euler untuk sumbu x y1=y1+h*(v0*sin(a)-g*t); %Metode Euler untuk sumbu y end 5. kemudian simpan dengan menekan ctrl dan S, beri nama gerak_peluru.m 6. Clik run (gambar segitiga hijau ) 7. Isi kecepatan awal dan sudut elveasi seperti pada gambar di atas,...

Read More